Эльбрус/архитектура: различия между версиями

Материал из ALT Linux Wiki
м (→‎Производительность: примечание по классам характера исполняемого кода)
Строка 29: Строка 29:


= Ссылки =
= Ссылки =
* [http://www.mcst.ru/elbrus_prog Руководство по эффективному программированию на платформе «Эльбрус»]
* [http://www.elbrus.ru/elbrus_arch Краткое описание архитектуры Эльбрус]
* [http://www.elbrus.ru/elbrus_arch Краткое описание архитектуры Эльбрус]
* [http://www.mcst.ru/doc/book_121130.pdf Микропроцессоры и вычислительные комплексы семейства «Эльбрус»] (книга, PDF)
* [http://www.mcst.ru/doc/book_121130.pdf Микропроцессоры и вычислительные комплексы семейства «Эльбрус»] (книга, PDF)

Версия от 20:06, 31 мая 2020

Архитектура "Эльбрус"

Оригинальная 64-битная Little Endian VLIW; также известна как "Эльбрус-2000" (сокращённо e2k).

Не путать со SPARC и иными RISC, а также x86 (CISC).

Версии

Микропроцессоры "Эльбрус" различаются версиями микроархитектуры и системы команд; на июль 2019 года известны следующие:

  • v2: "Эльбрус-2С+", "Эльбрус-2СМ" (устарела)
  • v3: "Эльбрус-4С" (предыдущая)
  • v4: "Эльбрус-8С", "Эльбрус-1С+" (актуальная)
  • v5: "Эльбрус-8СВ" (инженерные образцы, расширенные векторные вычисления)
  • v6: "Эльбрус-16С", "Эльбрус-12С", "Эльбрус-2С3" (с аппаратной виртуализацией)

Совместимость

В процессе портирования Альта была отмечена отличная практическая совместимость процессоров четвёртого поколения с бинарным кодом e2kv3, включая ядро, видеоподсистему и даже бинарный транслятор; тем не менее официально она не гарантируется.

Производительность

При сборке под e2k для производительности и совместимости следует применять компилятор, настроенный под конкретную версию архитектуры (начиная с lcc 1.23 -- возможна настройка и под конкретный процессор).

При этом разница по 7za b, собранным под v3 и v4, на v4 составила у нас порядка процента.

Известно, что при переходе на e2kv6 "штраф" бинарникам, оптимизированным под предыдущие версии архитектуры, в ряде случаев вырастет, т.к. вследствие значительного роста тактовой частоты сильно изменятся планируемые задержки при работе с памятью и не ожидающий этого код будет чаще попадать на останов конвейера.

В то время как компилируемый код благодаря большим возможностям оптимизации (в т.ч. выявления и задействования скрытого параллелизма) во время компиляции находится в потенциально выигрышном положении по сравнению с суперскалярными архитектурами, виртуальные машины для байткода и интерпретаторы симметрично находятся в положении проигрышном (для их работы характерна высокая степень зависимости по данным в циклах). Это стоит учитывать при планировании разработки.

Ссылки